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Abstract. We compare distributions of leptons produced in hadronic collisions, by a horizontal neutral
gauge boson, Z′, suggested by the Sp(6)L ⊗ U(1)Y model, to those produced by other theoretically mo-
tivated neutral gauge bosons occurring in left–right symmetric models and in superstring-inspired E6

models. Forward–backward asymmetries in the gauge boson leptonic decay are found to be sensitive to
specific forms of the couplings. The asymmetries are expected to be maximal for Z′, distinguishing it from
the other Z’s.

The standard model (SM) [1] of electroweak interactions
is in excellent agreement with existing data on low-energy
neutral- and charged-current processes and on the mass
of the W and Z bosons [2]. Moreover, the precision exper-
iments from the CERN e+e− collider have spectacularly
confirmed the model [3]. However, it is generally believed
that the SM is just the low-energy limit of a more funda-
mental theory, containing new physics capable to address
the many questions that the SM leaves unanswered.

In this work we consider the Sp(6)L⊗U(1)Y model pro-
posed some time ago [4]. This model predicts the existence
of a set of intergenerational, horizontal gauge bosons,
keeping the fermion spectrum intact. In the Sp(6)L ⊗
U(1)Y model, the standard SU(2)L is unified with the hor-
izontal gauge group GH(= SU(3)H) to an anomaly free,
simple, Lie group. The six left-handed quarks (or leptons)
belong to a 6 of Sp(6)L, while the right-handed fermions
are all singlets. It is thus a straightforward generalization
of SU(2)L to Sp(6)L, with the three doublets of SU(2)L
coalescing into a sextet of Sp(6)L. Sp(6) can be naturally
broken into [SU(2)]3 = SU(2)1 ⊗SU(2)2 ⊗SU(2)3, where
SU(2)i operates on the ith generation exclusively. Thus
the standard SU(2)L is to be identified with the diago-
nal SU(2) subgroup of [SU(2)]3. In terms of the SU(2)i
gauge boson, Ai, the SU(2)L gauge bosons are given by
A=

(
1/31/2

)
(A1+A2+A3). Of the other orthogonal com-

binations of Ai, A′ =
(
1/61/2

)
(A1+A2−2A3), which ex-

hibits universality only among the first two generations,
can have a mass scale in the TeV range [5]. The addi-
tional gauge bosons A′, denoted by Z ′ and W ′± , suggest
new physics [6] beyond the standard model.

In this work we would like to compare characteristic
signals in hadronic collisions, resulting from the neutral
member Z ′, with those from other theoretically motivated,
popular, neutral gauge bosons. In particular, we will con-
sider here the neutral gauge boson, ZLR, occurring in left–
right symmetric models and Zχ, Zψ and Zη occurring in

grand unified theories (GUTs) based on E6 and SO(10)
groups (including superstring models) [7,8].

With one additional neutral gauge boson, the neutral-
current Lagrangian is modified so as to contain an addi-
tional term,

−LNC = eJµemAµ + g1J
µ
1 Z

0
1µ + g2J

µ
2 Z

0
2µ, (1)

where Z0
1 is the SU(2) ⊗ U(1) boson and Z0

2 is the addi-
tional boson in the weak eigenstate basis. The gi are the
gauge couplings with g1 = g/ cosϑW, where g = e/ sinϑW.
For the Sp(6)L ⊗ U(1)Y model, g2 = ((1 − x)/2)1/2g1 =
g/21/2, x = sin2 ϑW. For the left–right models and GUT
motivated cases considered here the couplings of the ex-
tra Z’s are g2 = (5/3)1/2 sinϑWg1. The neutral currents
Ji, i = 1, 2, are given by

Jµi =
1
2

∑
f

ψfγ
µ(g(i)

V (f) + g
(i)
A (f)γ5)ψf . (2)

Here g(i)
V,A(f) are the vector and axial-vector couplings of

fermion f to Z0
i , respectively. They are related to the chi-

ral couplings ε(i)L,R(f) by

g
(i)
V,A(f) = ε

(i)
L (f)± ε

(i)
R (f). (3)

After symmetry breaking the weak eigenstate bosons Z0
i

are related to the mass eigenstate bosons Zi by

Z1 = Z0
1 cosϕ+ Z0

2 sinϕ,
Z2 = −Z0

1 sinϕ+ Z0
2 cosϕ, (4)

where ϕ denotes the mixing angle between Z0
1 and Z0

2 .
The neutral-current Lagrangian now reads

−LNC = g1

2∑
i=1


∑

f

ψfγµ(V
(i)(f) +A(i)(f)γ5)ψf


Zµi ,

(5)
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where

V (1)(f), A(1)(f)

=
1
2

[
g
(1)
V,A(f) cosϕ+

g2
g1
g
(2)
V,A(f) sinϕ

]
, (6)

V (2)(f), A(2)(f)

=
1
2

[
−g(1)

V,A(f) sinϕ+
g2
g1
g
(2)
V,A(f) cosϕ

]
. (7)

In our analysis, we make the simplifying assumption that
Z0

1–Z
0
2 mixing can be ignored, as it is constrained to be

tiny for all the models considered in this work [9].
For the SM, g(1)

V (f) = (T3L − 2xQ)f and g
(1)
A (f) =

(T3L)f . Here (T3L)f and Qf are the third components of
weak isospin and electric charge of fermion f , respectively.
For the Sp(6)L ⊗U(1)Y model g(2)

V (f) = g
(2)
A (f) = (T3L)f

for the first two generations and g
(2)
V (f) = g

(2)
A (f) =

−2(T3L)f for the third one. Thus, the fermion couplings
in the Sp(6)L ⊗ U(1)Y model are purely left handed. For
the GUT cases considered here, the couplings are given in
[7].

We will also consider the SU(2)L⊗SU(2)R⊗U(1) (LR)
model [8], for which the boson Z0

LR couples to the current

JµLR =
√
3/5

(
αJµ3R − 1

2α
JµB−L

)
, (8)

where J3R is the third component of SU(2)R and B(L) is
the baryon (lepton) number. Thus

ε
(LR)
L (f) =

√
3
5

(−1
2α

)
(B − L), (9)

ε
(LR)
R (f) =

√
3
5

[
α(T3R)f − 1

2α
(B − L)

]
. (10)

In (8)–(10)

α =



1−

(
1 +

ε2L
ε2R

)
sin2 θW

ε2L
ε2R

sin2 θW




1/2

, (11)

where εL,R are the SU(2)L,R gauge couplings. In the spe-
cial case of left–right symmetry (εL = εR) considered here

α =
(
1− 2 sin2 θW

sin2 θW

)
� 1.53. (12)

Several articles have dealt with phenomenological ef-
fects resulting from the presence of theoretically moti-
vated, additional neutral gauge bosons [10]. However, to
date, there is no experimental evidence from the Fermilab
Tevatron for the existence of any additional neutral gauge
bosons [11]. It is now commonly believed that if an addi-
tional neutral gauge boson exists, it should be observed
through the Drell–Yan process at high-energy pp colliders
if its mass is in the few TeV range or less. A Drell–Yan

process for production of a vector boson of mass M by
colliding hadrons A and B has the cross-section per unit
rapidity

dσ
dy

=
4π2xAxB
3M3

∑
q

G+
q Γqq, (13)

where we define

G±
q = fq/A(xA)fq/B(xB)± fq/A(xA)fq/B(xB). (14)

Here fq/A is the parton distribution function of quark q
in hadron A, and Γqq is the partial width for the decay of
the gauge boson into the quark pair qq. The momentum
fractions xA,B are related to the rapidity by

xA,B =
(
M√
s

)
e±y, (15)

where s1/2 is the total c.m. energy. Consider the two-body
process qq → ll in the quark–antiquark center of mass. Let
the angle between l and q be θ∗ in this frame. Then the
angular distribution is a linear combination of (1+cos θ∗)2
and (1− cos θ∗)2 contributions:

dσ
d cos θ∗ ∝ (εL(q)2εL(l)2 + εR(q)2εR(l)2)(1 + cos θ∗)2

+ (εL(q)2εR(l)2 + εR(q)2εL(l)2)(1− cos θ∗)2,
(16)

where we use εL,R to denote ε
(2)
L,R. For A + B −→ Z2 +

· · · −→ l− + · · ·, we have
d2σ

dyd(cos θ∗)
∝

∑
q

{G+
q (εL(q)

2 + εR(q)2)

× (εL(l)2 + εR(l)2)(1 + cos2θ∗)
+ G−

q (εL(q)
2 − εR(q)2)(εL(l)2 − εR(l)2)

× (2 cos θ∗)}, (17)

where we denote the forward direction by the one in which
hadron A is traveling. Forward–backward asymmetries
AFB may be constructed by binning data with respect
to rapidity. For any fixed y, we define

AFB(y) =
F −B

F +B
, (18)

where

F ±B =
[∫ 1

0
±

∫ 0

−1

]
d(cos θ∗)

d2σ

dyd(cos θ∗)
. (19)

We then find

AFB(y) =
3
4
εR(l)2 − εL(l)2

εR(l)2 + εL(l)2

∑
q[εR(q)

2 − εL(q)2]G−
q∑

q[εR(q)2 + εL(q)2]G+
q
.

(20)
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Fig. 1. Gauge boson production cross-section times branch-
ing fraction into µ+µ− pair (σB), for Z′, ZLR, Zχ, Zψ, Zη
and Z, in pp collisions at s1/2 = 14TeV as a function of the
gauge boson mass M . Z here represents a gauge boson with
the couplings of the standard Z, but with mass being a free
parameter. Also shown is σB(Z′ → τ+τ−)

The forward–backward asymmetry, AFB(y), is even (odd)
in y for pp (pp) machines. The integrated forward–
backward asymmetry is defined by

AFB =

[∫ ym

0
±

∫ 0

−ym

]
dy(F −B)

[∫ ym

0
+

∫ 0

−ym

]
dy(F +B)

, (21)

with the +(-) sign relevant for pp (pp) collisions and ym =
ln(s1/2/M).

In what follows we will be interested in studying distri-
butions of leptons produced in Z2 decay in hadronic colli-
sions. In particular, we would like to examine and compare
production cross-sections and characteristic asymmetries
in pp collisions resulting from the additional neutral gauge
bosons considered in this analysis.

Given the Tevatron null results on the discovery of new
gauge bosons, it is necessary to consider higher collision
energies in order to probe higher gauge boson masses. The
proposed Large Hadron Collider (LHC) at CERN is ex-
pected to achieve a maximum collision energy of s1/2 =
14TeV, with a designed luminosity of L = 1034 cm−2s−1

[12]. The relevant quantity to consider here is σB: the
gauge boson production cross-section times the branching
fraction into dileptons. We calculated σB for the gauge
bosons considered in this analysis at s1/2 = 14TeV (LHC),

Fig. 2. Rapidity distributions (Bdσ/dy) for muon pairs from
Z′, ZLR, Zχ, Zψ and Zη production by pp collisions at s1/2 =
14TeV, with M = 1TeV. Also shown is Bdσ/dy for tau pairs
from Z′

assuming that ϕ = 0. In calculating cross-sections, we use
the Martin–Roberts–Stirling–Thorne set MRST99 of par-
ton distribution functions [13]. For comparison, we also
consider a gauge boson, Z, with couplings identical to
those of the standard Z, but with the mass being a free
parameter. In calculating σB for ZLR, Zχ, Zψ, and Zη
we use assumptions identical to those employed in [14].
The product σB is presented in Fig. 1 as a function of the
gauge boson mass, M , for M ≥ 0.5TeV. In fact, recent
direct-search lower bounds on M , for any of the gauge
bosons considered here, showed that M ≥ 0.5TeV [15].
Figure 1 shows that the µ+µ− production rate for any of
the considered gauge bosons is lower than the correspond-
ing rate for Z. Also, the Z ′ muon pair production rate
overlaps the corresponding rate for Zχ. However, Fig. 1
shows that the Z ′ → τ+τ− production rate at LHC is
higher than the corresponding rates of the other gauge
bosons, allowing Z ′ to be distinguished. In fact, because
of the generation-dependent couplings of fermions to Z ′,
a four-fold enhancement is expected in its τ+τ− produc-
tion rate relative to its µ+µ− production rate [16]. With
the given luminosity, LHC is expected to achieve an in-
tegrated luminosity of 105 pb−1 per 107 s year of running.
Thus, for a typical value of MZ′ , MZ′ = 1(2)TeV, a run
with the given integrated luminosity would yield approx-
imately 2.1 × 104(8.4 × 102) Z ′’s events decaying into a
µ+µ− pair and 8.67 × 104(3.47 × 103) Z ′’s events decay-
ing into a τ+τ− pair a year. In Fig. 2 we compare rapid-
ity distributions, Bdσ/dy, for muon pairs from the gauge
bosons, at the LHC, where we takeM = 1TeV. The inter-
ference of the Z ′ and Zχ cross-sections is made manifest in
Fig. 2. For Z ′, the Q = 2/3 and Q = −1/3 quark compo-
nents contribute equally to the cross-section. On the other
hand, the cross-section for Zχ is enhanced near y = 0 and
suppressed at higher |y|. This is due to the relative sup-
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Fig. 3. Forward–backward asymmetries, AFB(y), for pp →
Z2 + ... → µ+µ− at s1/2 = 14TeV, with M = 1TeV. Also
shown is AFB(y) for the standard model gauge boson, Z

pression of the Q = 2/3 component which is more im-
portant at higher |y| and less important near y = 0. Also
shown in Fig. 2 is the expected B(dσ/dy) for tau pairs
from Z ′.

The forward–backward asymmetry, AFB(y), is very
useful for identifying gauge bosons, because it is very sen-
sitive to specific forms of the couplings. In Fig. 3 we present
AFB(y) for the models considered here as a function of
y. We also consider the standard model gauge boson, Z,
with mass M = 91.1882GeV. No asymmetries are ex-
pected for Zψ because of its pure axial couplings. Small
asymmetries are expected for Z because ε2L(e) ≈ ε2R(e).
Larger asymmetries are expected for Zχ and Zη, still di-
luted somewhat because ε2L(u) = ε2R(u). They fall off for
large |y| because the gauge boson is mainly produced by
the u quark in this region, and ε2L(u) = ε2R(u). For ZLR,
since ε2R(q) � ε2L(q), AFB(y) is expected to approach
≈ ±(3/4)(ε2L(e)− ε2R(e))/(ε

2
L(e) + ε2R(e)) at ±ym, respec-

tively. Maximal asymmetries are expected for Z ′ because
of its pure left-handed couplings to fermions. Thus, for
Z ′, with ε2L(u) = ε2L(d) = ε2L(e), AFB(y) is expected to
approach ±0.75 at ±ym, respectively. The signs of the
asymmetries in Z ′ production are identical to those in
ZLR and Z production and opposite to those in Zχ and
Zη production, for the same value of y. In Fig. 4 we present
the integrated forward–backward asymmetries AFB for all
models, as a function of the gauge boson mass which is
taken as a free parameter. Figure 4 shows thatAFB is fairly
uniformly distributed, over the considered range ofM , for
all models. The integrated forward–backward asymmetry
is largest for Z ′, with AFB ≈ 0.4 and smallest for Zχ with
AFB ≈ −0.15.

In conclusion, the Sp(6)L ⊗ U(1)Y extension of the
standard model gauge group suggests an additional neu-
tral horizontal gauge boson, Z ′. We studied distributions
of leptons produced by Z ′, as well as by other theoretically
motivated neutral gauge bosons at the LHC. In particu-
lar, we considered the gauge bosons: ZLR, Zχ, Zψ and Zη
occurring in left–right symmetric models and in models
based on the E6 and S(10) groups. Z ′ is difficult to be
distinguished through its µ+µ− production rate because

Fig. 4. Integrated forward–backward asymmetries AFB for
pp → Z2 + ... → µ+µ− at s1/2 = 14TeV, with M = 1TeV

of the overlapping with Zχ. However, the Z ′ → τ+τ−
production rate is higher than the corresponding rates
of the other gauge bosons. The forward–backward asym-
metry, AFB(y), in the gauge boson leptonic decay is ex-
pected to provide crucial “fingerprints” of the gauge bo-
son couplings. Because of its pure left-handed couplings to
fermions, maximal asymmetries are expected for Z ′, dis-
tinguishing it from the other Z’s. The integrated forward–
backward asymmetry AFB is largest for Z ′, with AFB ≈
0.4 and smallest for Zχ with AFB ≈ −0.15.
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